GEOMETRY: EXAMPLES 2

- 1. Let Σ be the graph of a smooth function $F : \mathbb{R}^2 \to \mathbb{R}$. Compute its first fundamental form I, Gauss map *n*, second fundamental form II, and Gaussian curvature *K*.
- 2. Calculate *K* for the hyperboloid defined by $x^2 + y^2 z^2 = c$, where $c \neq 0$. [*Hint: Parametrise it as a surface of revolution, after deleting the points* $(0, 0, \pm \sqrt{-c})$ *if* c < 0.] Describe the sign, behaviour near infinity, and *c*-dependence of *K*, and illustrate with diagrams for c > 0 and c < 0.
- 3. Suppose $\sigma(u, v)$ and $\tau(x, y)$ are overlapping parametrisations of an embedded surface Σ , with first fundamental form $E du^2 + 2F du dv + G dv^2 = E' dx^2 + 2F' dx dy + G' dy^2$.
 - (a) Express the matrix $\begin{pmatrix} E' & F' \\ F' & G' \end{pmatrix}$ in terms of the matrix $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$, and show that you get the same answer if you set $du = u_x dx + u_y dy$ and $dv = v_x dx + v_y dy$, and formally 'multiply out'.
 - (b) Deduce that in polar coordinates the first fundamental form on $\mathbb{R}^2 \setminus \{0\}$ is $dr^2 + r^2 d\theta^2$.
- 4. (a) Show that inverse stereographic projection $\sigma^+ : \mathbb{R}^2 \to S^2$ is conformal, and deduce that the Earth (assumed to be a perfect sphere!) can be covered by maps which accurately represent angles.
 - (b) Let *C* be the vertical cylinder defined by $x^2 + y^2 = 1$ and let $F : S^2 \setminus \{(0, 0, \pm 1)\} \rightarrow C$ be horizontal projection. Show that *F* is area-preserving and deduce that the Earth can be covered by maps which accurately represent areas up to a constant scale factor.
 - *(c) Consider a parametrisation of $S^2 \setminus \{(0, 0, \pm 1)\}$ as a surface of revolution, i.e.

$$\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$$

with WLOG g(0) = 0 and g'(0) > 0. Show that there exists a unique choice of f and g such that σ is area-preserving. Show also that there exists a unique choice such that σ is conformal, but that there is no choice such that σ is a local isometry.

5. Show that any compact embedded surface Σ in \mathbb{R}^3 has an elliptic point, as follows. Let $p \in \Sigma$ be a point of maximal distance, R say, from the origin, and let n(p) be the inward-pointing unit normal vector to Σ at p. Using the fact that Σ is contained in the sphere of radius R about the origin, and is tangent to it at p, show that for all $w \in T_p \Sigma$ we have

$$II_p(w,w) \ge \frac{1}{R}I_p(w,w).$$

[*Hint: points in* Σ *near* p *can be written as* p + w + f(w)n(p), for small $w \in T_p\Sigma$, and Π_p is the Hessian of f at 0.] By simultaneously diagonalising Π_p and Π_p , show that $K(p) \ge \frac{1}{R^2}$.

- 6. Fix a point p in an embedded surface Σ and recall from lectures that if $w \in T_p \Sigma$ is a unit vector then $\Pi_p(w, w)$ represents the curvature κ_w at p of the orthogonal slice through Σ in direction w.
 - (a) Show that there exist real numbers k_1 , k_2 , such that κ_w is always between k_1 and k_2 , and that κ_w attains these values in orthogonal directions w_1 and w_2 . [*Hint:* D_pn is self-adjoint.]
 - (b) Explain why k_1k_2 is a local isometry invariant, but show that k_1 and k_2 themselves need not be.
 - (c) What implications does this have for how to pick up a slice of pizza?
- 7. Fix real numbers a > b > c > 0. For each of the following surfaces Σ compute the Gaussian curvature K and the integral $\int_{\Sigma} K \, dA$.
 - (a) The torus given by the image of $\sigma(u, v) = ((a + b \cos u) \cos v, (a + b \cos u) \sin v, \sin u)$. (In lectures we have focused on the case a = 2, b = 1.)
- *(b) The ellipsoid defined by $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1.$
- 8. Let Σ be the cylinder defined by $x^2 + y^2 = 1$. Show that a geodesic on Σ through the point (1, 0, 0) can be parametrized to be contained in a spiral of the form $\gamma(t) = (\cos \alpha t, \sin \alpha t, \beta t)$, where $\alpha^2 + \beta^2 = 1$.
- 9. Let $\Sigma \subset \mathbb{R}^3$ be a smooth embedded surface in \mathbb{R}^3 .
 - (a) Suppose that a straight line $\ell \subset \mathbb{R}^3$ lies entirely in Σ . Prove that ℓ is a geodesic on Σ .
 - (b) Deduce that through every point p of the hyperboloid $x^2 + y^2 z^2 = 1$ there are at least three complete geodesics.