Geometry: Examples 2

1. Let Σ be the graph of a smooth function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Compute its first fundamental form I , Gauss map n, second fundamental form II, and Gaussian curvature K.
2. Calculate K for the hyperboloid defined by $x^{2}+y^{2}-z^{2}=c$, where $c \neq 0$. [Hint: Parametrise it as a surface of revolution, after deleting the points $(0,0, \pm \sqrt{-c})$ if $c<0$.] Describe the sign, behaviour near infinity, and c-dependence of K, and illustrate with diagrams for $c>0$ and $c<0$.
3. Suppose $\sigma(u, v)$ and $\tau(x, y)$ are overlapping parametrisations of an embedded surface Σ, with first fundamental form $E \mathrm{~d} u^{2}+2 F \mathrm{~d} u \mathrm{~d} v+G \mathrm{~d} v^{2}=E^{\prime} \mathrm{d} x^{2}+2 F^{\prime} \mathrm{d} x \mathrm{~d} y+G^{\prime} \mathrm{d} y^{2}$.
(a) Express the matrix $\binom{E_{F^{\prime}}^{\prime}}{F^{\prime}}$ in terms of the matrix $\left(\begin{array}{c}E \\ F \\ G\end{array}\right)$, and show that you get the same answer if you set $\mathrm{d} u=u_{x} \mathrm{~d} x+u_{y} \mathrm{~d} y$ and $\mathrm{d} v=v_{x} \mathrm{~d} x+v_{y} \mathrm{~d} y$, and formally 'multiply out'.
(b) Deduce that in polar coordinates the first fundamental form on $\mathbb{R}^{2} \backslash\{0\}$ is $\mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}$.
4. (a) Show that inverse stereographic projection $\sigma^{+}: \mathbb{R}^{2} \rightarrow S^{2}$ is conformal, and deduce that the Earth (assumed to be a perfect sphere!) can be covered by maps which accurately represent angles.
(b) Let C be the vertical cylinder defined by $x^{2}+y^{2}=1$ and let $F: S^{2} \backslash\{(0,0, \pm 1)\} \rightarrow C$ be horizontal projection. Show that F is area-preserving and deduce that the Earth can be covered by maps which accurately represent areas up to a constant scale factor.
*(c) Consider a parametrisation of $S^{2} \backslash\{(0,0, \pm 1)\}$ as a surface of revolution, i.e.

$$
\sigma(u, v)=(f(u) \cos v, f(u) \sin v, g(u))
$$

with WLOG $g(0)=0$ and $g^{\prime}(0)>0$. Show that there exists a unique choice of f and g such that σ is area-preserving. Show also that there exists a unique choice such that σ is conformal, but that there is no choice such that σ is a local isometry.
5. Show that any compact embedded surface Σ in \mathbb{R}^{3} has an elliptic point, as follows. Let $p \in \Sigma$ be a point of maximal distance, R say, from the origin, and let $n(p)$ be the inward-pointing unit normal vector to Σ at p. Using the fact that Σ is contained in the sphere of radius R about the origin, and is tangent to it at p, show that for all $w \in T_{p} \Sigma$ we have

$$
\mathrm{I}_{p}(w, w) \geq \frac{1}{R} \mathrm{I}_{p}(w, w) .
$$

[Hint: points in Σ near p can be written as $p+w+f(w) n(p)$, for small $w \in T_{p} \Sigma$, and II_{p} is the Hessian of f at 0.] By simultaneously diagonalising I_{p} and I_{p}, show that $K(p) \geq \frac{1}{R^{2}}$.
6. Fix a point p in an embedded surface Σ and recall from lectures that if $w \in T_{p} \Sigma$ is a unit vector then $\mathrm{I}_{p}(w, w)$ represents the curvature κ_{w} at p of the orthogonal slice through Σ in direction w.
(a) Show that there exist real numbers k_{1}, k_{2}, such that κ_{w} is always between k_{1} and k_{2}, and that κ_{w} attains these values in orthogonal directions w_{1} and w_{2}. [Hint: $D_{p} n$ is self-adjoint.]
(b) Explain why $k_{1} k_{2}$ is a local isometry invariant, but show that k_{1} and k_{2} themselves need not be.
(c) What implications does this have for how to pick up a slice of pizza?
7. Fix real numbers $a>b>c>0$. For each of the following surfaces Σ compute the Gaussian curvature K and the integral $\int_{\Sigma} K \mathrm{~d} A$.
(a) The torus given by the image of $\sigma(u, v)=((a+b \cos u) \cos v,(a+b \cos u) \sin v, \sin u)$. (In lectures we have focused on the case $a=2, b=1$.)
${ }^{*}\left(\right.$ b) The ellipsoid defined by $\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1$.
8. Let Σ be the cylinder defined by $x^{2}+y^{2}=1$. Show that a geodesic on Σ through the point $(1,0,0)$ can be parametrized to be contained in a spiral of the form $\gamma(t)=(\cos \alpha t, \sin \alpha t, \beta t)$, where $\alpha^{2}+\beta^{2}=1$.
9. Let $\Sigma \subset \mathbb{R}^{3}$ be a smooth embedded surface in \mathbb{R}^{3}.
(a) Suppose that a straight line $\ell \subset \mathbb{R}^{3}$ lies entirely in Σ. Prove that ℓ is a geodesic on Σ.
(b) Deduce that through every point p of the hyperboloid $x^{2}+y^{2}-z^{2}=1$ there are at least three complete geodesics.

